Inhomogeneous Fluid Approach to Solvation Thermodynamics. 1. Theory

نویسنده

  • Themis Lazaridis
چکیده

The solvation energy and entropy at infinite dilution consist of a solute-solvent term and a solvent reorganization term representing the contributions of changes in solvent structure upon solute insertion. In the standard, homogeneous treatment of solutions, changes in solvent structure are expressed through derivatives of the homogeneous pair correlation function, which are very difficult to obtain by simulation. Tractable expressions for the solvation energy and entropy are here derived by viewing the solution as an inhomogeneous system with the solute fixed at a certain point. The solvent reorganization terms in the inhomogeneous view contain two contributions: the local, “correlation” contributions, which are due to correlations between the solute and the solvent and dominate at high densities, and the nonlocal, “liberation” contributions, which are due to the effective dilution of the solvent caused by the thermal motion of the solute and dominate at low densities. The liberation contributions are independent of the nature or size of the solute and depend only on the properties of the solvent. For common liquid solvents the nonlocal terms are negligible and the solvation properties arise almost entirely from effects localized around the solute. The new expressions are tested by calculations of the solvent reorganization energy and entropy in ideal hard-sphere and Lennard-Jones mixtures (solute identical to solvent). The solvent reorganization energy and entropy make distinct and significant contributions to the solvation free energy. The theory can be applied to truly inhomogeneous systems as well as small solute solvation, thus providing a connection between interfacial phenomena and microscopic solvation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and Thermodynamics of Molecular Hydration via Grid Inhomogeneous Solvation Theory

Changes in hydration are central to the phenomenon of biomolecular recognition, but it has been difficult to properly frame and answer questions about their precise thermodynamic role. We address this problem by introducing Grid Inhomogeneous Solvation Theory (GIST), which discretizes the equations of Inhomogeneous Solvation Theory on a 3D grid in a volume of interest. Here, the solvent volume ...

متن کامل

Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST

The expulsion of water from surfaces upon molecular recognition and nonspecific association makes a major contribution to the free energy changes of these processes. In order to facilitate the characterization of water structure and thermodynamics on surfaces, we have incorporated Grid Inhomogeneous Solvation Theory (GIST) into the CPPTRAJ toolset of AmberTools. GIST is a grid-based implementat...

متن کامل

Free-energy analysis of solvation with the method of energy representation.

A new theory of solutions, the method of energy representation, is introduced by adopting the solute-solvent interaction energy as the coordinate of distribution functions. The density-functional theory is formulated over the energy coordinate, and an approximate functional for the solvation free energy is given in terms of energy distribution functions in the solution and reference solvent sys...

متن کامل

Thermodynamic properties of liquid water: an application of a nonparametric approach to computing the entropy of a neat fluid.

Due to its fundamental importance to molecular biology, great interest has continued to persist in developing novel techniques to efficiently characterize the thermodynamic and structural features of liquid water. A particularly fruitful approach, first applied to liquid water by Lazaridis and Karplus, is to use molecular dynamics or Monte Carlo simulations to collect the required statistics to...

متن کامل

Inhomogeneous Fluid Approach to Solvation Thermodynamics. 2. Applications to Simple Fluids

In the previous paper expressions for the partial molar energy and entropy at infinite dilution have been derived based on the inhomogeneous forms of the energy equation and the correlation expansion for the entropy. These expressions are here applied to a series of solutes of varying size in dense hard-sphere and Lennard-Jones solvents, some of which serve as reference systems for comparison w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998